■核心阅读
最近,一项利用人工智能技术诊断儿科疾病的科研成果公布。用纳入系统的55种常见儿科疾病和部分危急重症作测试,该人工智能系统诊断准确率超过了一般年轻医生。目前,系统已经在急诊分诊、门诊中临床应用,对一些凶险的、有可能威胁生命的重大疾病、罕见病,同样可以辅助医生诊断。
未来,这项技术还可以为基层和年轻儿科医生提供辅诊服务,为患儿家长提供智能自诊服务和权威的第二诊疗意见。
北京时间2月12日零时14分,国际顶级医学科研期刊《Nature Medicine》在线发布了题为《使用人工智能评估和准确诊断儿科疾病》的文章。该文章由广州市妇女儿童医疗中心与依图医疗等企业和科研机构共同完成。
这是全球首次在顶级医学杂志发表有关自然语言处理(NLP)技术基于中文文本型电子病历(EMR)做临床智能诊断的研究成果。
该研究成果表明,以后,人工智能也能看病了,而且医术不低,拿纳入系统的55种常见儿科疾病和部分危急重症作测试,诊断准确率超过了一般年轻医生。
读懂病历诊断准确
已在医院临床使用
这个人工智能系统“医术”不低。
它看病就像人类医生一样。医生将患者主诉、症状、个人疾病史、体格检查、实验室检验结果、影像学检查结果、用药情况等信息输入病历文本,系统自动将自由病历文本转换成规范化、标准化和结构化的数据。“读懂”病历后,系统给出诊断结果。
诊断准确率还挺高。以呼吸系统疾病为例,对上呼吸道疾病和下呼吸道疾病的诊断准确率分别为89%和87%,而在上呼吸道疾病诊断中,急性喉炎和鼻窦炎的准确率分别高达86%和96%,对不同类型哮喘的诊断准确率从83%到97%。
这好像有点超出我们的接受程度。但研究归研究,实践了吗?别急,研究团队还真的进行人机大战检验,后来还在医院真刀真枪临床使用了。
今年1月1日,该系统在广州市妇儿中心进入临床应用。1月1日至1月21日短短20天,该院医生已实际调用它开展辅助诊断30276次,诊断与临床符合率达到87.4%。
广州市妇儿中心医务部主任孙新谈了使用体会,他说,这套系统会对疾病进行分组分类细分。比如在最常见的呼吸系统疾病中,这个系统会先按上呼吸道和下呼吸道进行区分,再按喉炎、气管炎、支气管炎、肺炎细分,比较科学。
会“看图”能“识字”
深度学习医学知识
机器会看病,在于机器深度学习“病历”、医学知识,有了病种库后,建立诊断模型。
与以往人工智能系统不一样的是,该系统不仅会静态看图,还会“识字”,学习的数据量之大前所未有。依图与广州市妇儿中心进行合作,收集了该中心在2016年1月至2017年7月间的56.7498万个门诊病人的136.2559万次问诊电子病历,抽取到覆盖初始诊断包括儿科55种病例学中常见疾病的1.016亿个数据点。
其次,突破病历文本语言和计算机语言之间的障碍。这是研究人工智能病历学习中突破的最大难点。
为此,研究团队利用依图医疗的自然语言处理(NLP)技术建立一套病历智能分析系统,将病历变得标准化。并由30余位高级儿科医师和10余位信息学研究人员组成的专家团队,手动给电子病历上的6183张图表进行注释、持续检验和迭代,保证了诊断的准确性。
既能“看图”,又能“识字”,这意味着人工智能系统继续学习能力大大增强。“对于被采纳的结果,在核实之后会通过继续学习实现能力的提升。”论文第一作者、广州市妇儿中心数据中心主任梁会营博士说。
可辅助医生诊断
能避免误诊漏诊
该项研究成果将会带来深远影响。广州市妇儿中心主任、院长夏慧敏表示:“人工智能辅助诊断既能在一定程度上解决医疗服务能力不足的问题,又能提高服务的公平性和可及性。”未来,这项技术还可以为基层和年轻儿科医生提供辅诊服务,为患儿家长提供智能自诊服务和权威的第二诊疗意见。
目前,该人工智能辅诊系统已经在急诊分诊、门诊中临床应用,对一些有可能威胁生命的重大疾病,同样可以辅助医生诊断。
社科院人口与劳动经济研究所社会保障研究室主任陈秋霖分析,考虑到疾病的复杂性和可能存在的地域特征,在其他地区使用时,建议按更精准的要求开展适应性检验。“辅助诊断系统达到一些基本要求后,不同地区可以在使用过程中进行完善。”
上一版




放大
缩小
全文复制


