中国舒係报

空间太阳能电站渐行渐近

■本报记者 苏南

空间太阳能电站的构想正在逐步变 为现实。在近日召开的 2021 年空间技术 和平利用(健康)国际研讨会空间动力和 地面能源论坛上,与会专家一致认为,空 间太阳能电站有可能为应对世界能源危 机提供一种环保的解决方案,再过10-15年,空间太阳能相关技术研究将会取

当前,空间太阳能电站研究主要聚焦 在哪些领域,空间太阳能电站建设还需要 破除哪些障碍?

全球研发提速

空间太阳能电站是上世纪60年代, 美国科学家提出的一项太阳能利用方案: 通过卫星从太空捕集太阳能、转换成微波 能量,以一种安全、稳定的无线能量传输 方式传到地面站,通过地面站把接收的微 波能量转化为电能后接入电网。

经过50多年的发展,空间太阳能电 站离我们越来越近。国际宇航科学院秘书 长让·米歇尔·康坦告诉记者:"为了实现 不受季节、昼夜变化等影响的太阳能发 电,我们进行了很多研发和测试,研究如 何使用地球之外的清洁能源。目前,空间 太阳能电站概念已经在现实中得到了重 要发展。"

记者采访获悉,空间太阳能发电技术 (SPS)吸引了中国、美国、日本、韩国、英 国、俄罗斯、法国、澳大利亚、欧空局等国 家和组织的兴趣。美国在上世纪70年代 提出第一个空间太阳能电站系统方案概 —-1979SPS 基准系统 ,2012 年提出了 "任意大规模相控阵式空间太阳能电站";

日本将发展空间太阳能电站正式列入字 宙基本计划,在微波无线能量传输技术领 域的研究世界领先,规划在2050年后建 设商业化空间太阳能电站;英国进行技术 及经济性评估后,于今年9月正式发布了 《国家空间战略》,明确提出应当发展空间 太阳能电站,为英国提供一种潜在的零排

"中国在空间太阳能发电技术相关研 究中提出了创新的多旋转关节以及球型 能量收集阵列等空间太阳能电站方案,同 时在无线能量传输等关键技术方面取得 了重要的进步。如今我们研究的薄膜太阳 能电池可应用在空间太阳能发电技术当 中,发电效率可达30%。"据中国宇航学会 空间太阳能专业委员会主任委员李明介 绍,目前,我国正在建设两个实验基地,一 个是 2018 年开始在重庆建立的"空间太 阳能电站实验基地",预计2022年7月完 成基础设施建设;另一个实验基地是在西 安建立的"空间太阳能电站全链路地面演 示验证系统"。

我国空间太阳能电站研究实现了从 "跟跑"到"并跑"。按照我国专家提出的空 间太阳能电站发展建议,2025年,我国将 开展中小规模浮空器能量传输试验,此后 将逐渐开展空间太阳能电站关键技术在 轨验证工作,2035年开始建设兆瓦级空 间太阳能试验电站。

挑战大于机遇

在业内人士看来,随着可重复运载技 术的发展大幅降低发射成本,空间太阳能 电站先进方案设计和关键硬件技术取得 突破,制 约空间太

阳能电站发展的技术 经济障碍有望克服,"不过,目前挑

"美国和世界其它地区都在研究可 重复使用的低成本发射装置,未来的成 本可降低90%,远低于传统的运载火箭。 此外,随着技术的发展,未来航天器硬件 成本也有望降低90%。这些研究表明,过 去一直阻碍空间太阳能电站事业的成本 障碍基本消除。"国际宇航科学院十年空 间太阳能评估主席、国际宇航联合会空 间能源委员会主席约翰·曼金斯表示。

"技术上的挑战主要来自三个方面。" 李明告诉记者,"一是无线能量传输。地球 同步轨道对地面进行无线能量传输要求 高功率、高效率和高精度。我们已在地面 上做了很多实验,目前的能量传输精度可 达到约0.1度,但仍然还有很长的路要 走,因为实际要求是0.0005度。二是空间 高功率发电及电力传输管理,在空间开展 高压、高功率、远距离的传输,对现有的技 术来说均是巨大的挑战。三是电站的组装 与控制。由于空间太阳能电站不能直接发 射,需要把模块发射到轨道,在太空中进 行部署和组装。"

在业内人士看来,效率是空间太阳能

电站应用最 核心的问题, 总效率

必须要达到 10%以

上,才具备实用价值。提升三个环 节的效率是未来研究的关键:一是 太阳能转化成电能再转化为微波;二是微 波从36000公里的高度传输到地面,这中 间有一些空间传输的损失; 三是地面电站 接收微波后,转化成直流电。提升这三个环 节的效率,是未来研究的关键。

标准尚待制定

业内人士认为,除了技术和经济性以 外,空间太阳能电站的发展还涉及到许多 政策、法律和标准问题。"空间太阳能电站 采用的频率如何确定,允许的微波功率密 度是多少,如何考虑无线能量传输的安全 性以及不对其他设施造成干扰,空间太阳 能电站的轨道参数以及互联方式等诸多 标准尚需明确。"英国 Frazer-Nash 咨询公 司太空业务负责人、空间能源倡议联合主 席马丁·索尔陶表示。

另外,如何保证空间太阳能电站不会 产生太空垃圾,报废时间如何确定,报废 后怎么来处理等,均需国际标准化组织制 订标准。

为了达到零碳排放的目标, 世界对 于发展新型清洁能源的需求日益迫切, 随着航天技术的快速进步,空间太阳能 电站作为一种新型太阳能大规模开发方 式正在迎来良好的发展机遇,未来10— 20年,将成为关键技术突破和实现应用 的重要时期。

国内在运单体容量最大海上风电项目全部机组并网

△3图片新闻

11月25日,中广 核汕尾后湖 50 万千 瓦海上风电项目 91 台风机全部并网发 电,成为国内在运单 体容量最大的海上风 电项目之一。

该项目年上网电 量14.89亿千瓦时,每 年可节省标煤消耗约 42.58 万吨,减少二氧 化碳排放约 86.05 万 吨,烟尘28.85吨,二 氧化硫 713.30 吨,二 氧化氮 198.67 吨。图 为项目海上升压站。 刘会/图文

隔膜龙头企业再掀扩产潮

■本报实习记者 姚美娇

近日,恩捷股份携手宁德时代再度加 码隔离膜项目。公告显示,恩捷股份、宁德 时代双方约定于中国境内共同投资设立 一家平台公司,主要从事投资干法隔离膜 及湿法隔离膜项目。平台公司的总投资额 为人民币 80 亿元,注册资本为人民币 15 亿元,其中,恩捷股份持有平台公司51% 股权,宁德时代持有平台公司49%股权。

■■扩产升级

公告显示,宁德时代与恩捷股份约 定,在上市协议签署后的5年时间内,同 等商务条件的情况下,恩捷股份向宁德时 代优先供货;同时,宁德时代优先对该公 司的出货进行采购。

这并不是恩捷股份第一次与电池企 业合建产能。今年8月,恩捷股份曾宣布 拟与亿纬锂能合作在荆门成立合资公司, 建设年产能为 16 亿平方米的湿法锂离子 电池隔离膜和涂布膜项目,并优先向亿纬 锂能及其子公司供应,项目计划投资总额

除恩捷股份外,中材科技于11月发

布公告称,其控股子公司拟在呼和浩特投 资 8.95 亿元,建设"年产 3.2 亿平方米锂 电池专用湿法隔膜生产线项目"。在此之 前,中材科技还曾披露控股子公司拟在南 京投资建设"年产10.4亿平方米锂离子 电池隔膜生产线",项目总投资约37.53 亿元。今年10月,沧州明珠发布公告称, 拟在安徽省芜湖市投资建设"年产2亿平 方米湿法锂离子电池隔膜项目"。

安信证券的报告分析认为,随着国 内企业在隔膜制备工艺上的突破、扩产 速度的加快以及成本优势的凸显, 国内 隔膜企业差距进一步拉开, 龙头企业纷 纷加大扩产力度, 凭借研发实力与规模 优势筑高技术和成本壁垒, 行业集中度 有望进一步提高。

■■设备受限

中金公司的测算显示,隔膜行业在 2022年至2023年仍将供不应求,隔膜行 业扩产受隔膜设备产能供给及扩产周期

据了解,湿法锂电池隔膜生产过程分

为配料挤出、铸片、拉伸、萃取、干燥、收卷 等关键设备的核心技术,整套湿法锂电池 隔膜自动化生产线设备复杂, 主要依赖进 口。动力电池中的磷酸铁锂电池大多使用 干法隔膜,三元锂电池大多使用湿法隔膜。 其中,湿法隔膜的生产设备主要依赖进口, 同时价格较为昂贵。据东方证券研报,一条 干法隔膜生产线设备投入在 4000 万元左 右,一条产能合计1亿平方米/年的湿法隔 膜生产线设备投入在 1.5—3.3 亿元。"如果 从日本设备商进口一条完整的湿法隔膜生 产线,交货期通常在10个月以上。这对于 急需扩产的隔膜企业来说并不是最优解。" 一位隔膜行业人士说。

"隔膜产能受限问题主要存在于湿法 隔膜。我了解到,目前国内很多工厂已经 开始逐步寻找到其他替代产品,比如青岛 中科华联已经能够生产全套的湿法隔膜 设备。"伊维经济研究院研究部总经理吴 辉告诉记者。

■■差距拉大

那么,市场需求是否能为隔膜企业的

产能扩张提供足够支撑呢?据 W-Scope 测算,到 2025年,全球锂电池市场接近 1400 吉瓦时,对隔膜需求将达到 200 亿 平米,到 2030 年全球锂电池市场或将超 3000 吉瓦时,对隔膜需求接近 320 亿平 米,是2020年体量的5.3倍。

"依照目前隔膜供应量来看,届时可 能会出现隔膜供应短缺。但随着未来隔膜 企业加大投资,2025和2030年出现供应 短缺的几率会越来越低。"吴辉对此持有 乐观态度。

在市场需求增大的同时,行业竞争也 在加剧。业内人士指出,随着规模和技术 工艺水平提升,国内锂电池隔膜企业差距 将进一步拉开,市场进一步集中。因此,隔 膜企业需要不断提升工艺水平,提高供应 能力进而提高市场份额,才能在行业优胜 劣汰的过程中立足。

合理的价格、可观的盈利和持续的扩 产,有望成为隔膜厂的更好选择。"隔膜企 业扩产要基于潜在订单的需求量,不能盲 目扩产。另外,随着竞争加剧,成本更低才 能拥有竞争优势,隔膜良品率等降成本的 指标要做到更优。"吴辉说。

地方动态 ()

内蒙古 着力打造风电装备 制造全产业链基地

本报讯 11 月 25 日, 内蒙古自治 区人民政府办公厅印发《关于印发自 治区新能源装备制造业高质量发展实 施方案(2021-2025年)的通知》,要求 产业规模较快增长,规划"十四五"期 间,形成年产800万千瓦以上风电整 机及其零部件、400万千瓦以上太阳能 电池及组件、360万千瓦以上储能装 备、5000套以上燃料电池汽车电堆系 统、800 台套以上制氢及工业副产氢提 纯设备、40万吨以上储氢设备的生产 能力,新能源装备制造业产值达到 1000 亿元以上。

《通知》同时要求创新能力明显增 强。建成一批自治区级新能源装备制 造(产业)创新中心、技术创新中心、产 业技术研究院、工程研究中心、重点 (工程)实验室等创新平台,在风电、光 伏、氢能及储能装备等重点领域,建成 2—3 个国家级企业技术中心和技术创 新中心。企业研发投入持续增加,企业 研发经费投入占营业收入比例达到 3%以上。

在风电领域,要求加快现有产能 升级改造,优化产品结构,提升整机产 能利用率。适度发展风电整机制造,重 点发展叶片、发电机、增速机、轮毂、主 轴、定转子、法兰、轴承、控制系统等核 心配套零部件,提高零部件区内配套 能力,着力打造风电装备制造全产业 链基地,基本形成与自治区新增新能 源装机规模相匹配的风电装备生产能 力,努力建设我国北方重要的风力发 电装备制造基地。 (江临秋)

河北 拟建设 300 万千瓦 大型风光基地

本报讯 近日,河北省发改委发布 了国家第一批大型风电光伏基地项目 公示,拟安排大型风电光伏基地项目3 个共计300万千瓦,其中光伏150万 千瓦、风电 150 万千瓦。

河北省本次拟安排大型风电光 伏基地项目3个,其中张承张家口张 北县 100 万千瓦项目配置 150 兆瓦/ 300 兆瓦时储能,张承承德丰宁风光 氢储 100 万千瓦项目配置 115 兆瓦/ 230 兆瓦时电化学储能及 2000 标方/ 小时碱性电解水制氢。大唐集团、三 峡集团、国家能源集团开发规模分别 为 100 万千瓦,具体来看,大唐集团开 发风电 20 万千瓦、光伏 80 万千瓦;三 峡集团开发 100 万千瓦风电; 国家能 源集团开发30万千瓦风电、70万千 (刘宇) 瓦光伏。

广西 海上风电装备制造 产业正式落地

本报讯 近日,由广西投资集团、 防城港市政府、中广核公司、明阳新能 源公司共同建设的防城港新能源装备 制造产业园项目正式开工,标志着广 西海上风电装备制造产业正式落地。

建设新能源装备制造产业园旨在 打造年产能 200 万千瓦海陆主机及叶 片、塔筒等核心部件的产业基地,带 动形成发电机、齿轮箱等配套产业及 海洋牧场、海水制氢、储能等延伸产 业融合发展、创新的、具备强大区域 竞争力的特色新能源产业集群,进一 步加快广西海上优势资源转换装备 产业的实施步伐,实现地区经济快速 发展。

山东 首个高速公路边坡 光伏试验项目开工

本报讯 近日,山东省首个规模化 高速公路边坡光伏试验项目正式开 工。该项目由山东高速集团投资,在荣 乌高速荣成至文登段选取部分高速公 路路基边坡进行建设,总长度约2300 米,计划装机容量 0.21 万千瓦。

据了解,荣乌高速公路(荣成一乌 海),简称荣乌高速,国家编号为 G18, 途经山东、河北、天津、山西、内蒙古五 省市;起点在荣成,途经威海、烟台、新 河、潍坊、东营、黄骅、天津、霸州、涞 源、朔州、鄂尔多斯,终点在乌海,全长 1820 公里。

荣成至文登段是荣乌高速起始路 段,也是山东省高速公路网的重要组 成部分,该段东起荣成市崂山办事处 北 301 省道,向西经荣成滕家镇、大疃 镇,终点止于鲁高速 S24 威青高速泽 头收费站北,与威海一青岛高速公路 相连接。 (戴升宝)