
勿要寄望预报 专心科学警报

强震后如何亡羊补牢

"1500 来次地震预测准了 5 次。"近日媒体流传的一位"大 仙"所达到的地震预测准确率一定让著名科普作家方舟子哑然 失笑。对国内怀着各种目的进行的地震预测现象,方舟子为文 嘲讽批驳时,多次引用"里氏震级"发明人里克特的名言: "记者和一般公众冲向任何有关地震预测的建议,就像猪冲向满 槽的猪食……地震预测为业余人士、狂人和欺世盗名的骗子提 供了一个狩猎乐土。"

讲究用事实说话、精于文献分析、善于逻辑推理的方舟子 通过大量研究得出地震不可预测的结论, 但他同时也指出, 在 地震面前,人类还是可以积极作为,通过对地震波的研究,建 立地震警报系统,及时发出警报,为人们赢得逃生时间。实际 上,四川成都高新减灾研究所开发建设的地震警报系统已经初 现功力,为群众避险赢得了宝贵时间,尽管其精度和时效亟待

预报是不能完成的任务

打开中国地震局官方网站,人们在《职能职责》一栏第二 条可以看到"指导全国地震灾害预测和预防"这样的表述,正 是这一看似不起眼的 13 个字使大震前缄默不语的地震局承担 "失职"的罪责。以致芦山强震发生后,"撤销地震局"言论又 在互联网上持续发酵。正如方舟子所言:"中国每发生死亡惨 重的大地震, 地震局都会成为悲痛的人们的泄恨对象, 对其无 能、失职、瞒报的指责不绝于耳。"

方舟子说,国家地震局1971年成立后,把地震预报作为重 要职责,中国也成为世界上唯一把地震预报作为政府职能的国 家。然而, 地震局永远无法履行好"指导全国地震灾害预测和 预防"的职责,因为地震本不可预报。这是国际地震学界经历 过多次地震预报"滑铁卢"之后得出的结论。他解释说,国际 地震学界一度对地震预测充满信心。但是, 在美国地质学家布 雷迪与斯宾塞关于秘鲁利马地震的预测、美国主流地震学家关 于加州帕克菲尔德地震预测、日本地震学家关于东海大地震预 测等归于失败后,国际地震学界形成的主流观点是,根据现有 知识无法预测地震。

警报就是科学利用时间差

地震预报不可为,但总有一些人偏要为之。据方舟子研究, 从事地震预报的既有发了无数预测地震论文、递交了无数地震 预报材料,把各种可能性都预测了个遍的所谓"专家",也有根 据"古人穴位论和经络学说"甚至虎皮鹦鹉跳动次数预测地震 的无厘头"江湖术士"。在方舟子看来,更令人匪夷所思的是中 国地震局居然专设"老专家预报专项基金"来资助那些搞伪科 学研究的退休人员。

地震面前,科学理性当然还是大有作为的。通过对地震波 的研究,人们发现,地震波包括纵波和横波,前者传播速度更 快,但破坏力较小,而后者则相反。这样人们通过地震监测台 网,监测到传播速度更快的地震波纵波,向监测中心发出信号,

监测中心即可通过客户端用无线电波向公众和重点设施发出警 报。也就是说,地震警报是无线电波和地震横波的一场"赛跑",通 过时间差,在地震横波尚未到达时,给人们以警示。方舟子形象地 比喻说,就好像有人看到闪电后,能准确"预报"几秒种后会打雷。 其实两者同时发生,只是由于光比声快得多,远处的人先看到闪 电,后听到雷声,可以算时间差发出"打雷预报"。

在芦山地震中,成都高新减灾研究所开发建设的地震警报 系统在一定程度上发挥了警报功能。据统计, 地震警报信息分 别在地震波到达前,提前5秒、28秒、43秒和53秒发布到雅 安、成都和汶川等地。覆盖人群包括四川汶川及北川县 26 万电 视观众; 微博上 20 多万粉丝; 4000 多名手机和计算机 地震预警用户;北川中学等50多所学校8万余名师生, 为人们应急避险赢得了宝贵时间。

建立全覆盖预警网络

亡羊补牢,为时未晚。地震警报系统正紧急 运至并部署到地震灾区,用于应急抢险时提高救 援队伍的余震反应速度,加强灾区学校、安置点 的余震报警。但是,对饱受震灾之苦的中国 来说,建立一个全覆盖的地震警报系统是当 务之急。据悉,中国地震局"国冢地震烈 度速报与预警工程"目前已进入发改委立 项程序, 计划投入 20 亿元, 用 5 年时间建 成国家地震烈度速报与预警系统。

知易行难,方舟子认为做到全国 全覆盖至少具备3个条件:一是有密 集地震台网,及时监测全国;二 是对收集来的数据要能做高速、 有效的分析及估算。快速确定震 中,根据初步监测到的纵波 估计出地震的强度, 向可能 被地震危及的地区发出警报; 三是收到警报后, 电视 台、电台自动播放通知, 电厂自动停电等。

即使全国性预警系 统建立起来, 也需要进 一步提高其预报精度 和时效性,从系统运 行情况来看,时 常出现地震烈度 和等级误差较大, 并且警报不能 及时到达的问 题,失去 了应有意

了! 实际上警报技术非常复杂,往往不是一个 地震台就可以准确判断的,需要一个密度足够 的地震台网。仅用地震波初始的几秒钟来判 断是否地震,还很不成熟。这样处理时间就会 更长,警报盲区就会更大。

地震盲区示意图

P波快速判定地震是警报的关键

地震警报最关键的技术是快速判断地震技术, 这是 个非常复杂的技术, 其复杂的原因有二, 一是需要在地 震台一收到地震信号后,"立即"判断是地震,最好是 一两秒钟。这是极其困难的, 因为常规快速处理一个地 震 (称为地震速报) 需要一个地震台网, 在整个地震波 记录完整和扫过地震台网后, 获得完整数据后进行处理。 这里最大的问题是地震处动震相的识别,即使用计算机,最 快也需要几分钟时间才能确定地震参数, 而且有时还会出现 错误。这种处理完全是根据地震波传播原理确定的可靠方 法。可是这种方法对于地震警报是没有用的。

地震警报盲区实际上可能是地震破坏最大的区域

地震破裂带的长度是和震级有关,一般来说,5级地震为 1-3km, 6级为10-20km, 7级为30-80km, 8级为100-240km, 9级 为 300-1 000km。据上述分析,如果地震警报盲区为20km,就意味着

盲区直径为 40km, 这可能就相当于 7 级地震的 破裂带长度,一般来说也就是烈度最大的区域, 也就是可能受灾最大的区域。可见地震警报对于 大地震盲区以外的地震破坏是可以起作用的,而 对烈度最强的地区的地震破坏作用有限。同时我 们可以看出地震警报对于小地震作用不大,对于 大于7级以上的地震盲区以外的地区的地震破坏 具有减灾作用,笼统地说地震警报可以减轻地震 灾害是不严格的。对于地震直接破坏最严重的区 域可能是没有作用的。

地震警报对于烈度异常区及次 生灾害和生命线设施的作用

地震警报对于地震的破坏减轻作用是有限 的,但凡是大地震必然有两种现象必须重视,一是 地震的烈度异常区域,例如唐山大地震时的天津 宁河。二是凡是大地震必然引发次生灾害, 例如 汶川大地震的巨大滑坡。当然烈度异常区域往往 距震中区域以一定距离。因此地震警报对于这些 灾害的紧急避险还是有相当的作用的。即使是在 地震警报盲区内,应该也会发挥一定的作用。另外 地震警报对于生命线设施的紧急处置也是有作用 的,即使在地震警报盲区,得到地震警报时地震波已经到达和过去, 但是对于水电气这样的生命线设施的紧急处置还是有很大作用的, 因 为地震警报信号是在地震后几秒或十几秒发出的, 是目前最快的地震 报警,对于生命线设施采取紧急处置,避免进一步产生水电气的次生 灾害有很大的作用。

鉴于地震警报技术的现状,我们不能对地震警报"求全责备"。日 本气象厅在2007年10月1日发布地震警报系统投入使用时就明确指 出,由于地震警报技术本身和地震台站环境的问题,包括其他震动的 干扰、雷电干扰、仪器设备故障、地震判定技术的复杂, 地震警报可 能会出现漏、误、错报的情况。因此对于地震警报的确认和解除就非 常重要,应该成为地震警报系统的重要组成部分之一。

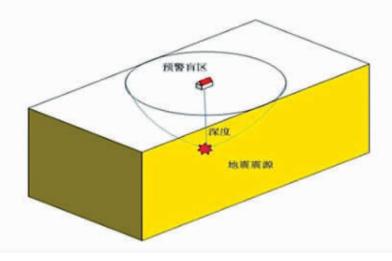
地震警报是个复杂的工程需全社会的动员和参与

要建成一套有效的地震警报系统需要具备以下条件:一是高密度 的地震台网:每20-30公里一台(实际上应该做到10公里一个台-本文作者注); 二是好的处理系统: 利用地震台网捕捉的信息迅速定 位、计算震级; 三是完善的发布系统: 将警报信息迅速传递到电视、 电台、手机、网络等公共平台;四是健全的法律法规保障:使整个系 统能有效运作。概括地说就是"测得到"、"定得准"、"传得出"。 "用得好"。

人民的教題

陈会忠 张晁军

地震警报,不是地震预报


地震发生后,有纵波 (P波) 和横波 (S波) 两种主要地震波 同时由震源向外传播。纵波传播速度较快,大约6公里/秒,但震 动相对较小。横波速度较慢,大约4公里/秒,携带能量大,是大 地震时造成破坏的元凶。地震警报系统是利用震中附近监测仪器捕 捉到地震纵波后,快速估算地震参数并预测地震对周边地区的影 响,抢在破坏性横波到达震中周边地区前,通过电子通讯系统发布预测 地震强度和到达时间的警报信息,使相关机构和公众能采取紧急措施,

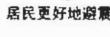
地震预报,是在地震发生之前,对地震发生时间、地点和强度(俗 称地震三要素)的预测报告。目前人类还不能准确地预报地震,它和地 震警报完全是两回事。

地震警报从原理上就有盲区

地震警报技术从原理上就有"盲区",所谓警报盲区就是地震警报到达 时,地震波已经到达或过去的区域。换句话说警报收到时,已经没用了。

地震警报技术本身在原理上就有一个不可避免的盲区, 在警报盲区地震报警 基本上是没有什么效果的,因为在盲区内的人们收到警报信息时,地震波已经过去

小学生作的为雅安祈福的画


中止手术

停止危险工作 及时疏散人群

地震应急警报带来的好处